AD/A-005 418

GRAPHS WITH DEGREES FROM PRESCRIBED INTERVALS

Michael Koren

Cornell University

Prepared for:

Office of Naval Research

January 1975

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS DEFORE COMPLETING FORM
1 REPORT NUMBER	Z. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 248		ADIA-005418
4 TITLE (and Subtitle)		5. TYPE OF HEPORT & PERIOD COVERED
GRAPHS WITH DEGREES FROM PRESCRIBED INTERVALS		
		6 PERFORMING ORG. REPORT NUMBER
/- AUTHOR(s)		Technical Report No. 248
- AVINALE/		TO THE TOR GRANT NUMBER(E)
Michael Koren		N00014-67-A-0077-0014
9 PERFORMING ONGAN LATION NAME AND ADDRESS		10. POR GRAN ELIMENT, PROJECT, TASK
Department of Operations Research		APLA 5 WORK UNIT NUMBERS
Cornell University		
Ithaca, New York 14853		
11 CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Operations Research Program		January 1975
Office of Naval Research		13. NUMBER OF PAGES
Arlington, Virgin.a 22217 14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)		15. SCCURITY CLASS. (cf this report)
TO PORTIONING AGENCY NAME & ADDRESS(IT different	nom Commonna Oraco)	Unclassified
		13. O.C. ASSISTED ATION, DOVING AD. NO.
		15. DACLASSIFICATION POWIGRADING SCHOOLE
15 DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited		
, , , , , , , , , , , , , , , , , , , ,		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)		
17. DISTRIBUTION STATEMENT (OF THE ADDITACT CHIEFED IN DIOCK 20, IT UTITETED HOW MANDETS		
i i		
IS SUPPLEMENTARY NOTES		
NATIONAL TECHNICAL		
INFORMATION SERVICE		
1) IKCY WORDS (Continue on reverse elde if necessary and identify by block number)		
Graphs, realizations		
ļ		
20. ABSTRACT (Continue on reverse elde if necessary and identify by block number)		
Necessary and sufficient conditions for the existence of simple		
graphs with degrees from prescribed intervals, are given.		

DEPARTMENT OF OPERATIONS RESEARCH COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NEW YORK

TECHNICAL REPORT NO. 248

January 1975

GRAPHS WITH DEGREES FROM PRESCRIBED INTERVALS*

by

Michael Koren

*Supported by the Office of Waval Research under contract N00014-67-A-0077-0014.

Reproduction in Whole or in Part is Fermitted for any Purpose of the United States Government.

Abstract

Necessary and sufficient conditions for the existence of simple graphs with degrees from prescribed intervals, are given.

1. Introduction

All graphs in this paper are finite and have no loops and no multiple edges. For undefined terms see [4].

The <u>degree</u>, d(p) = d(p,G) of a vertex p in an undirected graph G, is the number of edges of G, incident with p. The <u>outdegree</u> $d^{\dagger}(p,D)$ (<u>indegree</u> $d^{\dagger}(p,D)$) of a vertex p in a directed graph D, is the number of edges of D, having p as an initial (terminal) vertex.

Using flows, L. R. Ford and D. R. Fulkerson [2, Theorem 11.1] give necessary and sufficient conditions under which a directed graph D has a subgraph whose outdegrees and indegrees lie in prescribed intervals. The aim of this paper is to study analogue conditions for undirected graphs.

2. Notation

A graph is considered to be undirected unless otherwise specified. All graphs in this paper have the same set of vertices $\{p_1, \ldots, p_n\}$. A graph G is identified with its set of edges; for example, the <u>complete</u> graph on n vertices is $K_n = \{(p_i, p_j) | 1 \le i < j \le n\}$.

<u>Definition</u>: A <u>semi-graph</u> W is a function from the edges of K_n into $\{0,\frac{1}{2},1\}$. The <u>degree</u> of a vertex p in a semi-graph W is $d(p,W) = \sum_{i=1}^{n} W(p,p_i)$. A semi-graph W is a <u>semi-subgraph</u> of a graph G if $(p_i,p_j) \neq G \Rightarrow W(p_i,p_j) = 0$.

Notation: Throughout, ϕ and ψ will denote two sequences (a_1, \dots, a_n) and (b_1, \dots, b_n) , respectively, of non-negative integers, such that $a_i \leq b_i$ for $i = 1, \dots, n$.

<u>Definition</u>: A graph H (semi-graph H) is a $[\phi,\psi]$ -realization (semi- $[\phi,\psi]$ -realization) if $a_i \leq d(p_i,H) \leq b_i$ for $i=1,\ldots,n$. A $[\phi,\psi]$ -factor

(semi- $[\phi,\psi]$ -factor), of a given graph G, is a subgraph (semi-subgraph) of G which is a $[\phi,\psi]$ -realization (semi- $[\phi,\psi]$ -realization). The prefix $[\phi,\psi]$ -will sometimes be omitted.

Definition: For a directed graph D, and a set $S \subset \{1, ..., n\}$, $\delta^{\dagger}(p,S)$ is the number of edges of D, going from p to a vertex in $S^* = \{p_i | i \in S\}$, and $\delta^{-}(p,S)$ is the number of edges of D, going from a vertex of S^* to p. Similarly, for a graph G, $\delta(p,S)$ is the number of edges of G, connecting p to vertices in S^* .

3. Weighted subgraphs

We will need the following known theorem:

Theorem 3.1: [2, Theorem 11.1]. Suppose D is a directed graph on n vertices v_1, \ldots, v_n , and numbers a_i, b_i, a_i', b_i' are given $(i = 1, \ldots, n)$, such that $a_i \leq b_i, a_i' \leq b_i'$ for $i = 1, \ldots, n$. Then D has a subgraph E for which

$$a_i \le d^{\dagger}(v_i, E) \le b_i$$
 (i = 1,...,n) (3.1)

and

$$a'_{i} \leq d^{-}(v_{i}, E) \leq b'_{i} \quad (i = 1, ..., n)$$
 (3.2)

if and only if for all $S \subseteq \{1, ..., n\}$

$$\sum_{i \in S} a_i \leq \sum_{j=1}^n \min[b_j', \delta^{\dagger}(v_j, S)]$$
 (3.3)

and

$$\sum_{i \in S} a_i' \leq \sum_{j=1}^n \min[b_j, \delta^*(v_j, S)].$$
 (3.4)

Lemma 3.1: If $S,T \subset \{1,...,n\}$, and $S \cap T = \emptyset$, then for any graph G

$$\sum_{i \in S} d(p_i,G) \leq \sum_{i \in T} d(p_i,G) + s(n-1-t),$$

where s and t are the cardinalities of S and T, respectively.

Proof: Because G is simple,

$$\sum_{i \in S} d(p_i,G) - s(s-1) \leq Card\{(p_i,p_j) \in G | i \in S, j \in S\}$$

$$\leq \sum_{i \in S} \min(s,d(p_i,G)) \leq \sum_{i \in T} d(p_i,G) + s(n-s-t).$$

Lemma 3.2: (Compare [5, Lemma 2.2]). Let W be a semi-graph, and let $S \neq \emptyset$ and T be two disjoint subsets of N = $\{1, ..., n\}$. Then, if

$$i \in S, j \in N-T \Rightarrow W(p_i, p_j) = 1$$
 (3.5)

and

$$i \in T, j \in N-S \Rightarrow W(p_i, p_j) = 0,$$
 (3.6)

then

$$\sum_{i \in S} d(p_i, W) = \sum_{i \in T} d(p_i, W) + s(n-1-t).$$
 (3.7)

<u>Proof</u>: By condition (3.5), $\sum_{i \in S} d(p_i, W) - s(s-1) = \sum_{i \in S} W(p_i, p_j), \text{ and by }$ condition (3.6), the last sum is equal to

4

$$\sum_{i \in S} W(p_i, p_j) + s(n-s-t) = \sum_{i \in T} d(p_i, W) + s(n-s-t).$$

$$i \in T$$

Definition: Let $C = [p_1, \dots, p_1]$ be a path or a cycle in a semi-graph W, such that $W = \frac{1}{2}$ on all its edges. Alternating C will mean the changing of W on C, by alternatively adding and subtracting $\frac{1}{2}$ along C. In a positive (negative) alternation we begin at p_1 , (or at another specified vertex), by adding (subtracting) $\frac{1}{2}$.

Remark: If C is a path, then $d(p_i,W)$ and $d(p_i,W)$ will be changed by $\frac{1}{2}$, by an alternation. If C is an odd cycle, i.e. cycle with odd number of edges, then $d(p_i,W)$ will be increased, or decreased by 1, depending on whether the alternation is positive or negative. In any alternation, W becomes integral on C, and the degrees of p_i,\dots,p_i do not change. If C is even, i.e. C has even number of edges, then the degree of p_i also does not change.

Lemma 3.3: A graph C has a semi- $[\phi, \psi]$ -factor W such that for i = 1, ..., n

$$d(p_i, W)$$
 is integer (3.8)

If and only if for all $S \subseteq N$

$$\sum_{i \in S} a_i \leq \sum_{j=1}^{n} \min(b_j, \delta(p_j, S)).$$
 (3.9)

<u>Proof:</u> Let D be the symmetric directed graph which is obtained from G by replacing each edge (p_i, p_j) by two directed edges (one from p_i to p_j and one from p_j to p_i). Since $\delta(p_i, S) = \delta^+(p_i, S) = \delta^-(p_i, S)$ for i = 1, ..., n, and for all $S \subseteq \mathbb{N}$, it follows from Theorem 3.1, that D has a directed subgraph E for which

$$a_{i} \leq d^{\dagger}(p_{i}, E), d^{\dagger}(p_{i}, E) \leq b_{i}, \quad (i = 1, ..., l.),$$
 (3.10)

if and only if condition (3.9) holds for ϕ, ψ and G.

Suppose first that G has a semi- $[\phi,\psi]$ -factor W which fulfills condition (3.8). Let $W_1 = \{(p_1,p_j)|W(p_1,p_j)=1\}$ and $W_2 = \{(p_1,p_j)|W(p_1,p_j)=\frac{1}{2}\}$. By condition (3.8), each component of W_2 is Eulerian. By orienting each component of W_2 along an Eulerian cycle, and by replacing each edge of W_1 by two directed edges (one in each direction) we obtain a directed subgraph E of D which fulfills condition (3.10). Hence condition (3.9) holds for ϕ,ψ and G.

Suppose now that D has a subgraph E, for which condition (3.10) holds. Define

$$W(p_{i},p_{j}) = \begin{cases} 1 & \text{if } (p_{i},p_{j}),(p_{j},p_{i}) \in E \\ 0 & \text{if } (p_{i},p_{j}),(p_{j},p_{i}) \notin E \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Clearly W is a semi- $[\phi,\psi]$ -factor of G. Let $W_2 = \{(p_i,p_j) | W(p_i,p_j) = \frac{1}{2}\}$. We will show that if condition (3.8) does not hold, then it is possible to change W, to reduce W_2 .

Notice that $d(p_i,W)$ is an integer iff $d(p_i,W_2)$ is even. Thus, if for some j, $d(p_j,W)$ is not integer, then there exists an index k such that p_j and p_k are in the same component of W_2 , and $d(p_k,W)$ is not integer. Of course, $a_j + \frac{1}{2} \le d(p_j,W) \le b_j - \frac{1}{2}$ and $a_k + \frac{1}{2} \le d(p_k,W) \le b_k - \frac{1}{2}$. Hence, by alternating any path in W_2 , between p_j and p_k , we reduce W_2 .

4. The main theorems

Theorem 4.1: Let $\phi = (a_1, \dots, a_n)$, $\psi = (b_1, \dots, b_n)$ be two sequences of non-negative integers, such that $a_i < b_i$ for $i = 1, \dots, n$. Then a graph G has a $[\phi, \psi]$ -factor if and only if for all $S \subseteq N$

$$\sum_{i \in S} a_i \leq \sum_{j=1}^n \min(b_j, \delta(p_j, S)).$$
 (3.9)

Proof: If G has a $[\phi,\psi]$ -factor, then condition (3.9) holds, as we showed in the proof of Lemma 3.3. To prove the other direction, suppose condition (3.9) holds and let W be a semi- $[\phi,\psi]$ -factor of G, for which condition (3.8) holds. Let $W_2 = \{(p_1,p_j) | W(p_1,p_j) = \frac{1}{2}\}$. Each component of W_2 is Eulerian, and hence has an Eulerian cycle. If $W_2 \neq \emptyset$, let $C = [p_1, \ldots, p_i]$ be such a cycle. If C is even we may reduce W_2 by alternating C, either positively or negatively. If $C = [p_{i_1}, \ldots, p_{i_l}]$ is odd, then since $a_i < b_i$, either $d(p_{i_1}, W) > a_{i_1}$ or $d(p_{i_1}, W) < b_{i_1}$ (or both). In the first case a negative alternation of C will reduce W_2 and in the second case, a positive alternation will reduce W_2 .

Notice that the strong inequalities $a_i < b_i$ are needed for the reduction only for the alternation of odd cycles. Since the smallest odd cycle is a

triangle we may allow an equality $a_i = b_i$ in one or two indices i, in the conditions of Theorem 4.1.

Theorem 4.2: Suppose $\phi \neq \psi$ and ϕ is arranged in a non-increased order. Then, a $[\phi,\psi]$ -realization exists if and only if

a) for $j = 1, \ldots, n$

$$\sum_{i=1}^{j} a_{i} \leq \sum_{i=1}^{j} \min(b_{i}, j-1) + \sum_{i=j+1}^{n} \min(b_{i}, j)$$
 (4.1)

and

b) there are no two disjoint sets S,T \subset N, S $\neq \emptyset$, for which

$$\sum_{i \in T} a_i + \sum_{i \in T} b_i \text{ is odd}, \qquad (4.2)$$

$$\sum_{i \in S} a_i = \sum_{i \in T} b_i + s(n-1-t), \qquad (4.3)$$

and

$$a_i = b_i$$
 for $i \in N-S-T$. (4.4)

<u>Proof</u>: Condition (4.1) is a particular case of condition (3.9), where the given graph is K_n .

Suppose a $[\phi,\psi]$ -realization exists and for $S_0,T_0\subset\mathbb{N}$ such that $S_0\neq\emptyset$ and $S_0\cap T_0=\emptyset$, conditions (4.2)-(4.4) hold. Then

$$s_0(n-1-t_0) = \sum_{i \in S_0} a_i - \sum_{i \in T_0} b_i \leq \sum_{i \in S_0} d(p_i, H) - \sum_{i \in T_0} d(p_i, H) \leq s_0(n-1-t_0).$$

(The last inequality follows from Lemma 3.1.) Thus,

$$d(p_i, H) = a_i$$
 for $i \in N-T$

and

$$d(p_i, H) = b_i$$
 for $i \in T$.

Hence, by condition (4.2), $\sum_{i=1}^{n} d(p_i, H)$ is odd, a contradiction.

Suppose now that condition (4.1) holds for ϕ and ψ , but no $[\phi,\psi]$ realization exists. We will construct a pair of disjoint sets $S,T \subseteq N$, $S \neq \emptyset$,
for which conditions (4.2)-(4.4) hold.

By Lemma 3.3 and the proof of Theorem 4.1, there exists a semi-[ϕ , ψ]-realization W such that $d(p_i,W)$ is an integer for $i=1,\ldots,n$, and such that $W_2 = \{(p_i,p_j)|W(p_i,p_j)=\frac{1}{2}\}$ has no even cycles. Suppose $C_1 = [p_{i_1},\ldots,p_{i_\ell}]$ and $C_2 = [p_{j_1},\ldots,p_{j_k}]$ are two odd Euleria. cycles in W_2 . If $W(p_{i_1},p_{j_1})=1$ we may reduce W_2 by defining $W(p_{i_1},p_{j_1})=0$ and making a positive alternation of both C_1 and C_2 . (See Figure 1). A similar

$$W = 1 \text{ (Before changing)}$$

$$C_1$$

$$C_1$$

$$C_2$$

$$C_1$$

$$C_1$$

$$C_2$$

$$C_2$$

$$C_3$$

$$C_4$$

$$C_2$$

$$C_1$$

$$C_2$$

$$C_3$$

$$C_4$$

$$C_5$$

$$C_7$$

Figure 1

The numbers show the new values of W.

reduction is obtained if $W(p_{i_1}, p_{j_1}) = 0$ by setting $W(p_{i_1}, p_{j_1}) = 1$ and making a negative alternation of the cycles. Thus there exists a semi- $[\phi, \psi]$ -realization W, in which $W_2 = [p_{i_1}, \ldots, p_{i_\ell}] = C$ is an odd cycle. Fix W for which W_2 is maximal (and fix C).

Let

$$S = \{i | p_i \in W_2, W(p_i, p_{i_1}) = ... = W(p_i, p_{i_l}) = 1\},$$

$$T = \{i | p_i \ge W_2, W(p_i, p_{i_1}) = ... = W(p_i, p_{i_{\ell}}) = 0\}.$$

We have to show that if no $[\phi,\psi]$ -realization exists, then conditions (4.2)-(4.4) hold for S and T. We will show it, in a chain of 5 claims, the proofs of which will be given at the end of the proof of the theorem.

Claim 1. If i ε S and j ε N-T, then $W(p_i, p_j) = 1$.

Claim 2. If $i \in T$ and $j \in N-S$, then $W(p_i, p_j) = 0$.

Claim 3. If i \(\) S, then $d(p_i, W) = b_i$.

Claim 4. If $i \ge T$, then $d(p_i, W) = a_i$.

Claim 5. The set S is not empty.

(4.2)-(4.4) hold.

Using Lemma 3.2, claims 1, 2 and 5 imply the equality $\sum_{i \in S} d(p_i, W) = \sum_{i \in T} d(p_i, W)$ + s(n-1-t). Claims 3 and 4 imply that $\sum_{i \in S} a_i = \sum_{i \in S} d(p_i, W)$, $\sum_{i \in S} a_i = \sum_{i \in S} d(p_i, W)$, and for $i \in S$ U.T, $i \in T$ $i \in T$ and $i \in S$ U.T, and $i \in S$ $i \in S$ and $i \in S$ and $i \in S$ $i \in S$ and $i \in S$ and

To finish the proof we have only to prove the 5 claims:

Proof of claim 1: Since i ϵ S, (p_i, p_j) & W_2 . Suppose $W(p_i, p_j) = 0$. Then by the construction of S, p_j & W_2 . As j & T there exists a vertex p_k on W_2 such that $W(p_j, p_k) = 1$. Let p_r be the consecutive vertex of p_k , along C. (See Figure 2). By redefining $W(p_k, p_r) = 1$, $W(p_i, p_j) = W(p_j, p_k) = W(p_i, p_r) = \frac{1}{2}$ we enlarge W_2 , a contradiction to its maximality.

W = 1 (Before changing)

W =
$$\frac{1}{2}$$
 (Before changing)

W = $\frac{1}{2}$ (Before changing)

Figure 2

The numbers show the new values of W.

Proof of claim 2: Similarly to the case of claim 1, if $W(p_i,p_j) \neq 0$ for $i \in T$, $j \in N-S$, then $W(p_i,p_j) = 1$, $p_j \notin C$, there exists k such that $W(p_j,p_k) = 0$ and if p_r is the consecutive vertex of p_k , on C, then redefining $W(p_k,p_r) = 0$ and $W(p_i,p_j) = W(p_j,p_k) = W(p_i,p_r) = \frac{1}{2}$ chlarges W_2 . (See Figure 3).

- W = 1 (Before changing)
$$- - W = \frac{1}{2}$$
 (Before changing)

. W = 0 (Before changing)

Figure 3

The numbers show the new values of W.

Proof of claim 3: Suppose i & S and $d(p_i,W) < t_i$. If $p_i \in C$ we may reduce W_2 L" a positive alternation o C, beginning at p_i . (Compare to the proof of Theorem 4.1). If p_i & C then $W(p_i,p_k) = 0$ for some $p_k \in C$ and we may once more reduce W_2 , by a negative alternation of C, beginning at p_k and by set $W(p_i,p_k) = 1$. (See Figure 4). In each case we obtain a semi-graph W' which never gets the value $\frac{1}{2}$, i.e. a $[\phi,\psi]$ -factor, a contradiction.

$$- - - W = \frac{1}{2}$$
 (Before changing)
.... $W = 0$ (Before changing)

Figure 4

The numbers show the new values of W.

<u>Proof of claim 4</u>: As in the case of claim 3, if $d(p_i, W) > a_i$, $p_i \ge C$ but there exists an index k such that $p_k \in C$ and $W(p_i, p_k) = 1$. Thus we may reduce W_2 by letting $W(p_i, p_k) = 0$ and by making a negative alternation of C, beginning at p_k .

<u>Proof of claim 5</u>: We assumed $\phi \neq \psi$. Let $a_k \neq b_k$. Claims 3 and 4 imply that $k \in S \cup T$. If $k \in S$, then there is nothing to prove. Suppose $k \in T$. Then $d(p_k,W) = b_k > a_k \geq 0$, and since $W(p_k,p_j) = 0$ for all $j \in N-S$, there exists $r \in S$ such that $W(p_k,p_r) = 1$. In particular S is not empty.

References

- P. Erdős and T. Gallai, Gráfok előirt fokú pchtokkal, Mat. Lapok 11 (1960), 264-274.
- 2. L. R. Ford Jr. and D. R. Fulkerson, "Flows in Networks." Princeton University Press, Princeton, 1962.
- 3. D. R. Fulkerson, A. J. Hoffman and M. H. McAndrew, Scme properties of graphs with multiple edges, Can. J. Math. 17 (1965), 166-177.
- 4. F. Harary, "Graph Theory." Addison-Wesley, Reading, 1969.
- M. Koren, Sequences with a unique realization by simple graphs, to appear:
 J. Combinatorial Theory, B.